3.452 \(\int \frac{x^4}{\sqrt{1+x^3}} \, dx\)

Optimal. Leaf size=246 \[ -\frac{8 \sqrt{2} (x+1) \sqrt{\frac{x^2-x+1}{\left (x+\sqrt{3}+1\right )^2}} \text{EllipticF}\left (\sin ^{-1}\left (\frac{x-\sqrt{3}+1}{x+\sqrt{3}+1}\right ),-7-4 \sqrt{3}\right )}{7 \sqrt [4]{3} \sqrt{\frac{x+1}{\left (x+\sqrt{3}+1\right )^2}} \sqrt{x^3+1}}+\frac{2}{7} \sqrt{x^3+1} x^2-\frac{8 \sqrt{x^3+1}}{7 \left (x+\sqrt{3}+1\right )}+\frac{4 \sqrt [4]{3} \sqrt{2-\sqrt{3}} (x+1) \sqrt{\frac{x^2-x+1}{\left (x+\sqrt{3}+1\right )^2}} E\left (\sin ^{-1}\left (\frac{x-\sqrt{3}+1}{x+\sqrt{3}+1}\right )|-7-4 \sqrt{3}\right )}{7 \sqrt{\frac{x+1}{\left (x+\sqrt{3}+1\right )^2}} \sqrt{x^3+1}} \]

[Out]

(2*x^2*Sqrt[1 + x^3])/7 - (8*Sqrt[1 + x^3])/(7*(1 + Sqrt[3] + x)) + (4*3^(1/4)*Sqrt[2 - Sqrt[3]]*(1 + x)*Sqrt[
(1 - x + x^2)/(1 + Sqrt[3] + x)^2]*EllipticE[ArcSin[(1 - Sqrt[3] + x)/(1 + Sqrt[3] + x)], -7 - 4*Sqrt[3]])/(7*
Sqrt[(1 + x)/(1 + Sqrt[3] + x)^2]*Sqrt[1 + x^3]) - (8*Sqrt[2]*(1 + x)*Sqrt[(1 - x + x^2)/(1 + Sqrt[3] + x)^2]*
EllipticF[ArcSin[(1 - Sqrt[3] + x)/(1 + Sqrt[3] + x)], -7 - 4*Sqrt[3]])/(7*3^(1/4)*Sqrt[(1 + x)/(1 + Sqrt[3] +
 x)^2]*Sqrt[1 + x^3])

________________________________________________________________________________________

Rubi [A]  time = 0.0490425, antiderivative size = 246, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 13, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.308, Rules used = {321, 303, 218, 1877} \[ \frac{2}{7} \sqrt{x^3+1} x^2-\frac{8 \sqrt{x^3+1}}{7 \left (x+\sqrt{3}+1\right )}-\frac{8 \sqrt{2} (x+1) \sqrt{\frac{x^2-x+1}{\left (x+\sqrt{3}+1\right )^2}} F\left (\sin ^{-1}\left (\frac{x-\sqrt{3}+1}{x+\sqrt{3}+1}\right )|-7-4 \sqrt{3}\right )}{7 \sqrt [4]{3} \sqrt{\frac{x+1}{\left (x+\sqrt{3}+1\right )^2}} \sqrt{x^3+1}}+\frac{4 \sqrt [4]{3} \sqrt{2-\sqrt{3}} (x+1) \sqrt{\frac{x^2-x+1}{\left (x+\sqrt{3}+1\right )^2}} E\left (\sin ^{-1}\left (\frac{x-\sqrt{3}+1}{x+\sqrt{3}+1}\right )|-7-4 \sqrt{3}\right )}{7 \sqrt{\frac{x+1}{\left (x+\sqrt{3}+1\right )^2}} \sqrt{x^3+1}} \]

Antiderivative was successfully verified.

[In]

Int[x^4/Sqrt[1 + x^3],x]

[Out]

(2*x^2*Sqrt[1 + x^3])/7 - (8*Sqrt[1 + x^3])/(7*(1 + Sqrt[3] + x)) + (4*3^(1/4)*Sqrt[2 - Sqrt[3]]*(1 + x)*Sqrt[
(1 - x + x^2)/(1 + Sqrt[3] + x)^2]*EllipticE[ArcSin[(1 - Sqrt[3] + x)/(1 + Sqrt[3] + x)], -7 - 4*Sqrt[3]])/(7*
Sqrt[(1 + x)/(1 + Sqrt[3] + x)^2]*Sqrt[1 + x^3]) - (8*Sqrt[2]*(1 + x)*Sqrt[(1 - x + x^2)/(1 + Sqrt[3] + x)^2]*
EllipticF[ArcSin[(1 - Sqrt[3] + x)/(1 + Sqrt[3] + x)], -7 - 4*Sqrt[3]])/(7*3^(1/4)*Sqrt[(1 + x)/(1 + Sqrt[3] +
 x)^2]*Sqrt[1 + x^3])

Rule 321

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^n
)^(p + 1))/(b*(m + n*p + 1)), x] - Dist[(a*c^n*(m - n + 1))/(b*(m + n*p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 303

Int[(x_)/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Dist[(Sq
rt[2]*s)/(Sqrt[2 + Sqrt[3]]*r), Int[1/Sqrt[a + b*x^3], x], x] + Dist[1/r, Int[((1 - Sqrt[3])*s + r*x)/Sqrt[a +
 b*x^3], x], x]] /; FreeQ[{a, b}, x] && PosQ[a]

Rule 218

Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[(2*Sqr
t[2 + Sqrt[3]]*(s + r*x)*Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]*EllipticF[ArcSin[((1 - Sqrt[3
])*s + r*x)/((1 + Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]])/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[(s*(s + r*x))/((1 + Sqr
t[3])*s + r*x)^2]), x]] /; FreeQ[{a, b}, x] && PosQ[a]

Rule 1877

Int[((c_) + (d_.)*(x_))/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Simplify[((1 - Sqrt[3])*d)/c]]
, s = Denom[Simplify[((1 - Sqrt[3])*d)/c]]}, Simp[(2*d*s^3*Sqrt[a + b*x^3])/(a*r^2*((1 + Sqrt[3])*s + r*x)), x
] - Simp[(3^(1/4)*Sqrt[2 - Sqrt[3]]*d*s*(s + r*x)*Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]*Elli
pticE[ArcSin[((1 - Sqrt[3])*s + r*x)/((1 + Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]])/(r^2*Sqrt[a + b*x^3]*Sqrt[(s*(
s + r*x))/((1 + Sqrt[3])*s + r*x)^2]), x]] /; FreeQ[{a, b, c, d}, x] && PosQ[a] && EqQ[b*c^3 - 2*(5 - 3*Sqrt[3
])*a*d^3, 0]

Rubi steps

\begin{align*} \int \frac{x^4}{\sqrt{1+x^3}} \, dx &=\frac{2}{7} x^2 \sqrt{1+x^3}-\frac{4}{7} \int \frac{x}{\sqrt{1+x^3}} \, dx\\ &=\frac{2}{7} x^2 \sqrt{1+x^3}-\frac{4}{7} \int \frac{1-\sqrt{3}+x}{\sqrt{1+x^3}} \, dx-\frac{1}{7} \left (4 \sqrt{2 \left (2-\sqrt{3}\right )}\right ) \int \frac{1}{\sqrt{1+x^3}} \, dx\\ &=\frac{2}{7} x^2 \sqrt{1+x^3}-\frac{8 \sqrt{1+x^3}}{7 \left (1+\sqrt{3}+x\right )}+\frac{4 \sqrt [4]{3} \sqrt{2-\sqrt{3}} (1+x) \sqrt{\frac{1-x+x^2}{\left (1+\sqrt{3}+x\right )^2}} E\left (\sin ^{-1}\left (\frac{1-\sqrt{3}+x}{1+\sqrt{3}+x}\right )|-7-4 \sqrt{3}\right )}{7 \sqrt{\frac{1+x}{\left (1+\sqrt{3}+x\right )^2}} \sqrt{1+x^3}}-\frac{8 \sqrt{2} (1+x) \sqrt{\frac{1-x+x^2}{\left (1+\sqrt{3}+x\right )^2}} F\left (\sin ^{-1}\left (\frac{1-\sqrt{3}+x}{1+\sqrt{3}+x}\right )|-7-4 \sqrt{3}\right )}{7 \sqrt [4]{3} \sqrt{\frac{1+x}{\left (1+\sqrt{3}+x\right )^2}} \sqrt{1+x^3}}\\ \end{align*}

Mathematica [C]  time = 0.0051232, size = 34, normalized size = 0.14 \[ \frac{2}{7} x^2 \left (\sqrt{x^3+1}-\, _2F_1\left (\frac{1}{2},\frac{2}{3};\frac{5}{3};-x^3\right )\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[x^4/Sqrt[1 + x^3],x]

[Out]

(2*x^2*(Sqrt[1 + x^3] - Hypergeometric2F1[1/2, 2/3, 5/3, -x^3]))/7

________________________________________________________________________________________

Maple [A]  time = 0.016, size = 186, normalized size = 0.8 \begin{align*}{\frac{2\,{x}^{2}}{7}\sqrt{{x}^{3}+1}}-{\frac{-4\,i\sqrt{3}+12}{7}\sqrt{{\frac{1+x}{{\frac{3}{2}}-{\frac{i}{2}}\sqrt{3}}}}\sqrt{{\frac{1}{-{\frac{3}{2}}-{\frac{i}{2}}\sqrt{3}} \left ( x-{\frac{1}{2}}-{\frac{i}{2}}\sqrt{3} \right ) }}\sqrt{{\frac{1}{-{\frac{3}{2}}+{\frac{i}{2}}\sqrt{3}} \left ( x-{\frac{1}{2}}+{\frac{i}{2}}\sqrt{3} \right ) }} \left ( \left ( -{\frac{3}{2}}-{\frac{i}{2}}\sqrt{3} \right ){\it EllipticE} \left ( \sqrt{{\frac{1+x}{{\frac{3}{2}}-{\frac{i}{2}}\sqrt{3}}}},\sqrt{{\frac{-{\frac{3}{2}}+{\frac{i}{2}}\sqrt{3}}{-{\frac{3}{2}}-{\frac{i}{2}}\sqrt{3}}}} \right ) + \left ({\frac{1}{2}}+{\frac{i}{2}}\sqrt{3} \right ){\it EllipticF} \left ( \sqrt{{\frac{1+x}{{\frac{3}{2}}-{\frac{i}{2}}\sqrt{3}}}},\sqrt{{\frac{-{\frac{3}{2}}+{\frac{i}{2}}\sqrt{3}}{-{\frac{3}{2}}-{\frac{i}{2}}\sqrt{3}}}} \right ) \right ){\frac{1}{\sqrt{{x}^{3}+1}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^4/(x^3+1)^(1/2),x)

[Out]

2/7*x^2*(x^3+1)^(1/2)-8/7*(3/2-1/2*I*3^(1/2))*((1+x)/(3/2-1/2*I*3^(1/2)))^(1/2)*((x-1/2-1/2*I*3^(1/2))/(-3/2-1
/2*I*3^(1/2)))^(1/2)*((x-1/2+1/2*I*3^(1/2))/(-3/2+1/2*I*3^(1/2)))^(1/2)/(x^3+1)^(1/2)*((-3/2-1/2*I*3^(1/2))*El
lipticE(((1+x)/(3/2-1/2*I*3^(1/2)))^(1/2),((-3/2+1/2*I*3^(1/2))/(-3/2-1/2*I*3^(1/2)))^(1/2))+(1/2+1/2*I*3^(1/2
))*EllipticF(((1+x)/(3/2-1/2*I*3^(1/2)))^(1/2),((-3/2+1/2*I*3^(1/2))/(-3/2-1/2*I*3^(1/2)))^(1/2)))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{4}}{\sqrt{x^{3} + 1}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4/(x^3+1)^(1/2),x, algorithm="maxima")

[Out]

integrate(x^4/sqrt(x^3 + 1), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{x^{4}}{\sqrt{x^{3} + 1}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4/(x^3+1)^(1/2),x, algorithm="fricas")

[Out]

integral(x^4/sqrt(x^3 + 1), x)

________________________________________________________________________________________

Sympy [A]  time = 0.788531, size = 29, normalized size = 0.12 \begin{align*} \frac{x^{5} \Gamma \left (\frac{5}{3}\right ){{}_{2}F_{1}\left (\begin{matrix} \frac{1}{2}, \frac{5}{3} \\ \frac{8}{3} \end{matrix}\middle |{x^{3} e^{i \pi }} \right )}}{3 \Gamma \left (\frac{8}{3}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**4/(x**3+1)**(1/2),x)

[Out]

x**5*gamma(5/3)*hyper((1/2, 5/3), (8/3,), x**3*exp_polar(I*pi))/(3*gamma(8/3))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{4}}{\sqrt{x^{3} + 1}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4/(x^3+1)^(1/2),x, algorithm="giac")

[Out]

integrate(x^4/sqrt(x^3 + 1), x)